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1.0 INTRODUCTION

Among the many effects to consider in modeling environmental acoustics is the
phenomenon of forward scattering. This phenomenon is often referred to as out-of-plane
scattering. For a rough surface, it will result in a distribution of energy over some angular
region, as well as a loss of coherence.

The purpose of this document is to develop theories that will address various issues
pertinent to the problem. A theoretic outline drawn from various sources is presented in a
consistent fashion. The citation of these sources is in itself useful. In addition, some
details of the numeric implementation are discussed.

2.0 THEORETICAL BACKGROUND

Consider the problem

V2PT + k2pp = -f(r) (1)

for the pressure wave PT with wavenumber k from a distributed source f. The solution in
terms of the Green's function G(rJR), where

V 2G (r[R) + k2G (rIR) = -6 (r - R) (2)

is

PT(r) = 'f (R)G(rJR)3R +

J crJR. a pT (R) - PT (R) aG(rR) d2  (3)

For waves radiated into a unbounded medium,

G(rR) = 1 eik r- R (
4r r- RI

In the scattering problem, the volume integral is zero and the surface integral is over the
sphere at infinity and the object of interest. The integral over the sphere at infinity pro-
duces the incident wave po. Thus

T po (r) +J j[PT (R) 'G (rIR) - G (rIR) n (R) dS, (5)

which is an integral equation for PT. Here S denotes the sea surface, R the position of an
area dS relative to the origin, and n the normal to the surface, takern as psitic toward
the source. We will take the origin to be the plane-surface specular point.
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2.1 INTEGRAL EQUATION FORMULATION

Since S is a pressure-release surface, one boundary condition is that P2s = 0. Then

the Helmholtz integral formula (equation 5) becomes

PT (r) =po (r) -LG (rIR) apT (R) dS.6

Two integral equations [1] can be developed for -_2. By letting r approach the surface,

we have

po(r) = JfG(rIR)--PT(R)dS. (7)

This is a linear integral equation of the first kind for -. Alternatively, we can apply the

operator = V to equation 6 and then take the limit as r approaches the surface.

As discussed by Meechan [2], it is legitimate to differentiate through the integral sign, but

the limit process introduces integrable singularities in the integrand. The result is

OPT 0 2 aG(rJR)aT (R)] dS, (8)

which is a linear integral equation of the second kind for 22z. After finding L from

either equation 7 or equation 8, the scattered field P = PT - P0 follows from equation 6.

Thorsos has compared the "exact" results of numerical solution of the integral equa-

tion to solutions obtained by using the Kirchoff approximation 13] and the perturbation

approximation [4]. The perturbation approach is valid when the root-mean-square (rms)

surface height h is small compared to the acoustic wavelength A. Hence it is applicable

only for low-frequency scattering.

2.2 FRESNEL CORRECTED KIRCHOFF APPROXIMATION

To obtain the Kirchoff approximation, begin with equation 8 and drop the second term

on the right-hand side

OPT = 9 Po (9)

On -On

Note that this is exact for a flat surface. Hence it is also called the "tangent plane"

approximation. Intuitively, the Kirchoff approximation would appear valid when the sur-

face radii of curvature are large compared to A [51. However, Thorsos has found the

surface correlation length I to be the most important parameter in determining its validity

[3]. When 1 > 1, the Kirchoff approximation is accurate, except at low grazing angles
where shadowing and multiple scattering effects enter. Equation 6 may therefore be

written as

v(r) f eiklr-RI d. M.
J ' ' ' | I J A 
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This may be verified by first noting that equation 10 gives

anG ap G] dS (11)

- -n + 9 G dS, (12)

upon use of the boundary conditions. Then

2p, = If [ 0 -P)DG+ ( Po+N a ]dS (13), F Ga a 1n

Finally
= j(Pc -P)-ff-dS- P (14)

Finally

o 3

f f po(R)n (rj.)dS =p(r) (15)
and

7(ri)+ po (R)dS "- p(r) . (16)

The last expression is equivalent to equation 6.

To good approximation, the direct pressure seen at a point r resulting from a spherical
wave source located at rs is given by

( iklr-rS (17)
po(r)=ir - rsl

where 'P depends only on direction. As discussed by Eckart [5], it is necessary to assume
that the source is directional and ensonifies only a finite area of the sea surface. The
geometry used is illustrated in figure 1.

Now if Irs - RI > A and Ir - RI > A, equation 10 may be further simplified to

) f C R ik(IrSRI+r-RI) dS. (18)
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Figure 1. The scattering geometry used.

For a sufficiently directional source, the denominator may be replaced by its value at

the origin. In the exponential, we will use the Fresnel approximation.

Irs-RI+Ir-RI =rs+r+ 7"(xy)+ax+ I + + /3y+ 6x2 + xy Iy2 (19)

where is the local surface dispiacement, a zero-mean random variable, and

-y = - (sinVs + sinV) (20)

a = - (cos V's -cos V, cos P) (21)

/3 = cos V, sinp (22)

6 = I sin 2 V's + (1C-coS 2 COs 2;1) (23)
rs r

= r (1 cos2 Usin2 ) (24)

V 2- Cos 2 cosp s in  (25)
r
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The importance of Fresnel corrections has been discussed by Melton and Horton [6]. Note
that

dS- dxdy _ dxdy (26)dS:= (26)F
n,~ cos r

where F is the angle between the mean normal to the surface (the z-axis) and the local
normal at the specular point

tan2 F - C2 +02 (27)

Thus

ik eik(rs+r) ( + +
4ir rsr U P - 7 -I (28)

exp ik [-tC (x, y) + ax + fly + "6x2 + vxy + Ify2] } dxdy.

If P is taken as constant over the ensonified area and a Gaussian surface-height distri-
bution is assumed, this can be evaluated analytically [7]. However, a physical interpreta-
tion may be realized if the integral in equation 28 is evaluated asymptotically by the
method of stationary phase [8].

2.3 SPECULAR POINI THEORY

Let the stationary phase points be denoted Rj = (x,, yj, cj). A second-order expansion
in the neighborhood of one of these points gives

12 2 2
-f[( + (X - xj) a&(j + (y -yj) 0,¢(+
1 (X - Xj) 2 0.2 -(- (X _ Xj) (y yj)(Ox$yj + (29)

82
(y-Y) y~

That the phase is, in fact, stationary requires

0 = -ya&j +,a + a xj + Vyj (30)

0 = "'9Oj + + Cyj +"- VXj (31)

or
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a bxj + Vyj
= a

Oxj= -- +0-y
- (32)

Now since e9 ,C = -"- and 0OC = - , it can be seen that these are the conditions for
specular reflection, a result that might have been anticipated. Consequently

1rr1

irs -RI +ir -RI r + ¢ + (x - x ± xy +5y

1v( j) 0yyj + 2(x

5"y y (33)22- j(y
(34

Therefore, p(r) cn be written as a sum of specular point contributions

ik eik(rs+r) ( a2 + 62

P~) 47r rsr "yy\1 2 )Ie i  ,(5

where

Ir = k ± ox + -y, + ,xj+ j ,y+ ±s (36)

and
S /JPeP{ 1 r [ (x x)2 +2B j

=_ _ik -j ( O.( - xj) (y - yj) .,(+
2 (34)

with

A3 _ O)2 + - (38)

2

V = 0 Yj + - (39)
-'

C, =O , + . (40)

2

If P is taken to be constant, the integral can be evaluated 181. Three different situations

must be considered, corresponding to the nature of the phase extremum at Rj. For

pr) = i e -rsr 1 + a 2 I2 I



convenience, let the discriminant Dj = AjCj - B?. If Dj > 0 and A1 < 0, the quadratic
form is negative definite and the phase function has a relative maximum. If Dj > 0 and
A 1 > 0, the quadratic form is positive definite and the phase function has a relative mini-
mum. Finally, if Dj < 0, the quadratic form is indefinite and the phase function has a
saddle point. Then

27ri
= - k - D3 I, (41)k-, lDjl

where cj = 1,-i, or i at a relative maximum, relative minimum, or saddle point, respec-
tively. Thus

p(r) = eirs+) (+ 2 (42)

The discriminant can be related to the Gaussian curvature K of the surface at the
specular point. Now

1
K- K._,-6 (43)

[,0.2 2_ (02)2] [1 + (0.)2 + (0)2(

where R, and Rb are the principal radii [9]. Thus

D1) 1 1 + 1 (&e +/32) + 2 [(a6±+'3V) X. + (cwV +,3() y1J±
(R. Rb) ^t 2(

l[6+ 0) x +2v (b +c) xy+ (C 2 + V2) Y2]}+ (44)

I(ba2, + caxhx~ - 2a,()+ 1 2(6E - V2)
+ + + +2 (45)

__ 1
-(R, RRb )j 1+ )- + 0 (1j ) .(5

Now if r, and r2 see the same specular points, a good approximation if they are

close together, we have
( P )2 e k(ri -'  r2)"

p(rl)p" (r2)= 2. .r27 Zk (RRb)j (RRb)ke'("d'-"k) (46)

P ) 2 k ( r- 2 ) F

2rS rj 2 I .,(R ,Rb)ket + (47)
j;6k

At this level, Fresnel corrections are ignored.
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2.4 ENSEMBLE AVERAGE

The phys;"al interpretation can be further developed if the ensemble average is consid-

ered

(p~rl)p" (r2)) X (Er (Rxbj
rr 2  (48)

E( (Ro b) (Re Rb)kei(O -0k

Since the surface is random, this can be simplified by assuming that all physical quanti-

ties associated with the specular points have the same average values for all members of

the ensemble, although the number and location of the points fluctuate from member to

member [8]. Therefore

(E (R.Rb)j) = lim N, +,Y2 + NM (R0 Rb) = (N)(R,,Rb) , (49)jM-0 31

where (N) is the average of speculair points.

In the analysis of the second term, it may be assumed that the location and curvature

of a specular point are independent random variables. This allows us to separate the

expected values of the phase and amplitude factors. Then, if the phase differences

between rays from different specular points take on all values between ±maz with

uniform probability [10], the desired average is

(>1 j(Z (R.Rb).,(I?. Rb)k&(ol)Io)) =[(N)(RR)- (NY(RciRb)1
(sinOmax 2 (50)

In the high frequency limit, >m 0= 1 and this term may be neglected. Thus

(p (ri) p" (r2)) = (N)ARb) (51)

We will briefly mention a different point of view'. This assumes that the specular
points are close together, so that the phase differences are approximately equal. Then

f~jZ (R.Rb), (RGRb)ke(O.,JOk)) 1) [(N)2( VRe Rb)2  (N)(R,,Rb)] , (52)

for some constant 77 = 0(1), and

(p(r) p* (r2)) = (2-)2 eik(7r r2 [(1-r) (N)(R.Rb) + 77(N)2 (,[R R ]b)2) (53)
2s r1 r2

Luby, J.C., and D. Funk, private communication. The Applied Physics Laboratory, University of Washington,
Seattle, WA.
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Note that the dependence on geometry is implicit in (N), since (R0 Rb) is probably not
a very sensitive function of the geometry. (N) will be a maximum near-normal incidence,
Os = 1. As V's decreases, more points fall into shadow so that (N) decreases and will be
nearly zero at grazing.

2.5 PLANE-WAVE SOURCE

For a source of pllne waves,

Po = Peiks 'r• (54)

The problem is that of scattering from ks to k. Then

p(r,k) = f i 4iiR.-nl(5
JJ 47rr-RI~n t& S Ijd.(5

A somewhat different expression is usually encountered in the literature [8]. Observe that

r = [Ir-R12 + R2+2(r - R).R ]2 (56)

= r-RIR+I O'R+ (R) (r (57)

Therefore, ignoring Fresnel corrections,

p (r,_k) i P '9 {eik(kSk)R dS (58)

-P eS dxdy . (59)

The remaining analysis proceeds as before. Let

(ls - ) " R = ax +,3y +"((x,y) (60)

and expand ( about the stationary phase points to get

k) 1 eikr  R . (61)
2 r ' 'V R R b) . '

Finally

(p (ri) p* (r2)) -p 2 e k(r, -r2) (N) (R Rb) . (62)
4 rl r 2

Note that the scattering cross section from ks to k is therefore
21

a (ks, k) = 4rr2 Ip(r) 12 p- (6?)

= lr(N)(R.Rb). (64)
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Thus, in the high-frequency limit, the scattering problem has a simple physical interpreta-
tion. Each specular point has a cross section equal to the projected aiea of a sphere whose
radius is the geometric mean of the principal radii at the point.

Here (N) is quite sensitive to the scattering geometry, independent of any shadowing
effects. This will be clarified in the next section.

2.6 SURFACE STATISTICS

In considering the effects of surface statistics, it is convenient to begin with a surface
roughness spectral density W (IA;, K) normalized such that

,oor
V(K ",.) dKdK4= h'~ (65)

with h'= (42) the mean square surface height and K., and K, the surface spatial
wavenumbers. The roughness spectral density is related ( to by

W (K,4) = lim y( L (LJL x,y)e -i(x+KY)dxdy 2 (66)
L -oo (2 7r) 2 2 ' i

2.6.1 Gaussian Roughness Spectrum

Typically, a Gaussian roughness spectrum is used

12 " 2 2 21

47r X

where I is again the surface correlation length. The corresponding correlation function is

p (X, y) = f W (K, K) e(Kx+Ky')dK dK (68)
1' oo

= h-2e (69)

Barrick 1111 has derived expressions for the average number of specular points per
unit area, nA, and the average curvature in terms of the surface statistics, for plane-wave
illumination. For an isotropic surface with Gaussian statistics

7.255 ,..2 r
= e - (70)

where s2 is the mean square value of the total slope at a point on the surface,
= ((O()2 + (0()2) = s1 + s2. Here

.s2 = 4 -. (71)
2
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F again is the angle between the mean normal to the surface and the local normal at the
specular point. The average curvature can be approximated as

(K) = 7.255 s2 (72)
7r 12o

so that

12 4(R0 Rb) = 0.13787r- sec4 r . (73)

Therefore, the scattering cross section per unit area is

0o sec4 r (74)
A- = "S 2 -e _q-

2.6.2 Pierson-Moskowitz Roughness Spectrum

Fully developed sea surfaces exhibit a range of roughness scales (multiscale surfaces).
However, the Gaussian spectrum describes a single-scale surface. A more realistic model
is that of a Pierson-Moskowitz surface, in which the spectrum is completely determined by
the wind speed. To obtain the spatial spectrum, begin with the Pierson-Moskowitz fre-
quency spectrum [12] given by

ag2  r/ , (75)
S (w) = -s- exp L )4] (75)

with a = 8.10 x 10-3,/3 = 0.74, 9 = 9.81 m/s ~2 and U the wind speed at a height of 19.5
m. The gravity wave dispersion relation,

2glIj (76)

may be used to relate S (w) to a "nondirectional" wavenumber spectral density [13].

W (K = (w)dui= -- - g(77)

-)r K > 0, and W4 (K) = 0 for K < 0. This is normalized such that

j W(K)dK = h'. (78)

Thus

W(K) = a ( /32)(9

WK -' 1 3 exp U4K2 (79)
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and

h = 12U (80)

= (5.32 x 10- 3 m) (U)(81)

The definition of the 2D wavenumber spcctrum W (KIf) requires, in addition
to equation 75, a model for the azimuthal dependence. Scattering-theory con-
ventions require that W (K) = W(-K). A transformation to polar coordinates, using
W (K:, K.) dKdKy = W1 (K, 0) KdKdO, gives

(K.,KY) = + K2, arctan W,' PK 2 (82)

If the wind direction is chosen to be in the x direction, then 0 is also the azimuthal angle
relative to the wind. Then

W1NW=(~$ (I< (83)W, (K, 4D= (K, ¢) K) (83

where 4 (K, 0) describes the azimuthal dependence. It is normalized such that

1, (K,¢)do= 1 (84)

and satisfies the symmetry property 4 (K, 0 + 7r) = D (K, 0). A cos 2 € azimuthal depend-
ence for VV is often assumed, so that

D (k, )= -cos' . (85)

In this case

K2  fl2 1Wa (A'C I%" _,.3 ex 4 U+  2 + I (86)
2n (K2' + U4 K

12



3.0 IMPLEMENTATION CONSIDERATIONS

3.1 POINT-SCATrERER MODEL

For the purpose of simulation, the point-scatterer model appears the best implementa-

tion of forward scattering. This is because specular point theory gives reasonable fidelity
without excessive computational loads. Autoregressive and inverse beamformer models,

although computationally efficient, are poor representations of sources that are narrow-

band or have significant Doppler spread.2 They are also less easily visualized.

The model is also suitable for the analysis of short pulses. The times at which specular

points "turn on" and "turn off" can be calculated, and consequently the amount of time
required to ensonify the region required for steady-state analysis. For short-enough pulse
lengths, the steady-state condition is not reached. Therefore, a higher coherence would be

observed than that predicted by steady-state analysis [11].

The most straightforward implementation begins with the partition of a sufficiently

large portion of the surface into a grid with spacing of a correlation length. For each
correlation area, nA is used to determine whether a specular point is present. If so, it is
randomly placed in the area. These determine the paths, which are then summed. Luby

and Funk [11] have compared this technique with the closed-form solution of McDaniel

17), finding good agreement except when the source and receiver depths differ signifi-

cantly.

3.2 RANDOM SURFACE GENERATION

Single-ping realizations may be analyzed by generating random surfaces for specified
roughness parameters and then determining the specular reflections. There are several

good reasons for doing so. Examination of ping-to-ping fluctuations provides a measure
of higher-order statistics unavailable from ensemble methods. These are expected to be

significant in the performance of adaptive beamformers. In addition, the actual simulation

of surfaces provides a tool for the validation of methods proposed to calculate coherence.

Consider a surface that is random in both directions. The objective is to find C (x, y)
at N xA points with spacing Ax and Ay over lengths L, = NAa" and Ly = MAy.

Realizations can be generated at points x,, = nAx and yn = mAy by using
1 L 1 A- 1

(Xnym) (K F(KI),i)e i(Jz " +K'C ) (87)
j=- Mf

2 2

2 Hidinger, R. M., and J. M. Zyphur, private communication. Naval Ocean Systems Center, San Diego, CA.
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where

F (K, K,) = 27r [LL,,W (IKj1, IKu)]i CjG (88)

For j>0 and 1>0,

" N (0, 1) if 0 or
1 [N (0,1) + iN (0,1) otherwise(89)

N (0, 1) if/I= 0or M-{ 7[N(0, 1)+iN(0, 1)) otherwise 2 (90)

while for j <0, Gj = G, and similarly for I<0, G, = G*.,. Here 14= , Ki =

and each occurrence of N (0, 1) indicates an independent sample taken from a zero-mean,
unit-variance Gaussian distribution.

For numerical implementation, it is convenient to rewrite equation 87. First note that

AY NM N F (lj, N Ale2 ( - + ') (91)¢- 2

Shifting indices by letting J' = j + - and C = l + -M gives

e-n i(n
+ m) 1 N-i A2-(

M V NAI F Z(KJ, KCL ;r
¢,Ar. = a y N M F(i _L,IK _-) e:" + c  (92'

J=0 C=0 2

_(_1)-+-,

= ifft2 (F) , (93)

where ifft2 denotes the two-dimensional inverse Fourier transform. This is an efficient
form for calculation.

Figure 2 shows an example of a surface realization. Here the grid was taken to be 128

x 64 with spacings Ax = Ay = 0.2 m. The wind speed was chosen as U = 10 m/s -1 . A

slice taken along the x direction of this surface is shown in figure 3. Some of the small-
scale variation results from the relatively coarse resolution used. The latter figure, in
particular, indicates the multiscale behavior of the surface.

14



Figure 2. Example realization of a Pierson-Moskowitz surface.
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Figure 3. A slice in the x direction of the surface realization.
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4.0 SUMMARY

Forward scattering should be best simulated with a point-scatterer model through the
use of specular point theory. A derivation of specular point theory from the Helmholtz
integral formulation was presented, and the attendant approximations noted. All hold
reasonably well for most cases of interest, and produce only minor errors with respect to
the "exact" results.

Several implemcntation issues were discussed as well. A simple way to realize the
point-scatterer model is through the partition of the surface into correlation areas and the
probabilistic assignment of specular points. Detailed examination of ping-to-ping fluctua-
tions, or the effects of higher-order statistics, require the generation of surfaces with a
desired roughness spectrum. A procedure to realize this was presented.
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